
Quantum Computing Basics

Jackson Walters

February 22, 2025



Quantum computers



Outline

▶ Quantum computers

▶ Qubits

▶ Quantum gates

▶ Quantum algorithms

▶ Grover’s algorithm

▶ Demo!



Outline

▶ Quantum computers

▶ Qubits

▶ Quantum gates

▶ Quantum algorithms

▶ Grover’s algorithm

▶ Demo!



Outline

▶ Quantum computers

▶ Qubits

▶ Quantum gates

▶ Quantum algorithms

▶ Grover’s algorithm

▶ Demo!



Outline

▶ Quantum computers

▶ Qubits

▶ Quantum gates

▶ Quantum algorithms

▶ Grover’s algorithm

▶ Demo!



Outline

▶ Quantum computers

▶ Qubits

▶ Quantum gates

▶ Quantum algorithms

▶ Grover’s algorithm

▶ Demo!



Outline

▶ Quantum computers

▶ Qubits

▶ Quantum gates

▶ Quantum algorithms

▶ Grover’s algorithm

▶ Demo!



Richard Feynman on Quantum Computing

”Nature isn’t classical, dammit, and if you want to make
a simulation of nature, you’d better make it quantum me-
chanical, and by golly it’s a wonderful problem because it
doesn’t look so easy.” - Richard Feynman

”Trying to find a computer simulation of physics seems to
me to be an excellent program to follow out... and I might
be very surprised if it turned out that a classical simulation
of physics could ever work.” - Richard Feynman



Background and History of Quantum Computing

▶ 1981: Richard Feynman proposed quantum computers to
efficiently simulate quantum systems.

▶ 1985: David Deutsch introduced the concept of a universal
quantum computer.

▶ 1994: Peter Shor developed an algorithm for efficient integer
factorization, threatening classical cryptography.

▶ Early 2000s: Experimental implementations of quantum gates
and circuits began advancing.

▶ Present: Rapid progress in quantum hardware
(superconducting qubits, trapped ions) and error correction.



What is a quantum computer?

▶ Classical computers operate by manipulating bits (0 or 1)
using logic gates (AND, OR, NOT)

▶ These gates form a boolean algebra, and every algorithm can
be represented by a Boolean circuit

▶ Quantum computers are a generalization of classical
computers

▶ In a QC, we have two states |0⟩ and |1⟩ which can be in
superposition

▶ The gates are now unitary operators (complex rotations).
They’re invertible!

▶ The basic gates are Hadamard, Pauli (X, Y, Z), phase (S, T),
CNOT, SWAP, CCNOT

▶ Hadamard, CNOT, and T-gates together are universal
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What is a qubit?

▶ A qubit is a physical system which can be in one of two
possible eigenstates we can measure

▶ e.g. an electron with a spin which can be either | ↑⟩ (spin up)
or | ↓⟩ (spin down)

▶ physically, the electron is in a magnetic field, and can be
aligned or anti-aligned with it. ∆E = 2µBB

▶ the spin is like quantum angular momentum, and has units
±ℏ/2

▶ label our qubits |0⟩ and |1⟩ since they are two distinct states
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What is a qubit? (cont.)

c0, c1 ∈ C

|ψ⟩ = c0|0⟩+ c1|1⟩

|c0|2 + |c1|2 = 1

c200 + c201 + c210 + c211 = 1



What is a qubit? (cont.)

▶ state space of a qubit appears to be a 3-sphere

▶ however, there is also a ”global phase” e iθ since
|e iθc0|2 + |e iθc1|2 = 1 for all θ

▶ the resulting quotient space is a 2-sphere known as the Bloch
sphere

▶ i.e. can parameterize states with two angles
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What is a measurement?

▶ complex amplitudes associated to “wavefunction”

▶ when we measure, we get only one eigenstate |0⟩ or |1⟩
▶ prob(|0⟩) = |c0|2, prob(|1⟩) = |c1|2

▶ prob. always in [0, 1] since
∑

i |ci |2 = 1

▶ can manipulate amplitudes, but outcome is random w.r.t.
prob. distribution {|ci |2}
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Tensor products, input register

▶ we can combine single qubit states to get multi-qubit states

▶ e.g. |0⟩ ⊗ |0⟩ = |00⟩, |0⟩ ⊗ |1⟩ = |01⟩
▶ c0|0⟩+ c1|1⟩ ∈ V2

▶ V2 ⊗ V2 ⊗ . . .⊗ V2 = V⊗n
2 = V2n := H

▶ H = 2n dim’l Hilbert space w/ inner product ⟨x , y⟩ =
∑

i xiyi
▶ e.g. |00 . . . 0⟩ ∈ H, |10 . . . 0⟩ ∈ H, N := 2n states, n qubits

▶ basis {|00 . . . 0⟩, |01 . . . 0⟩, |11 . . . 0⟩}, . . . , |11 . . . 1⟩}
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Quantum Gates (Hadamard)

Action on Qubit:

|0⟩ H−→ 1√
2
(|0⟩+ |1⟩)

|1⟩ H−→ 1√
2
(|0⟩ − |1⟩)

Matrix Representation:

H =
1√
2

(
1 1
1 −1

)

Note (1/
√
2)2 = .5, so fully mixed. 1 qubit = 2 dim’l space.



Action of n Hadamard Gates on a Register

Consider the initial state of a quantum register with n qubits, all in
the state |0⟩:

|0⟩⊗n = |0⟩ ⊗ |0⟩ ⊗ · · · ⊗ |0⟩.

After applying n Hadamard gates, one on each qubit, the state
transforms into a uniform superposition of all 2n basis states:

H⊗n|0⟩⊗n = H|0⟩ ⊗ H|0⟩ ⊗ · · · ⊗ H|0⟩︸ ︷︷ ︸
n times

=
1√
2n

2n−1∑
x=0

|x⟩.

Here, the state is now a superposition of all possible 2n

computational basis states, each with equal amplitude.



Shor’s algorithm circuit



T Gate and Its Matrix Representation

T Gate:
The T gate, also known as the π/4-rotation gate, applies a phase
of π

4 to the |1⟩ state, while leaving |0⟩ unchanged.

Action on Qubits:

T |0⟩ = |0⟩, T |1⟩ = e i
π
4 |1⟩.

Matrix Representation:

T =

(
1 0

0 e i
π
4

)



Quantum gates (CNOT)

The Controlled-NOT (CNOT) gate flips the target qubit if the
control qubit is in the state |1⟩, otherwise it leaves the target
unchanged.
It operates on two qubits (so a 22 = 4 dim’l space).

CNOT|c, t⟩ = |c , t ⊕ c⟩,

where c is the control qubit and t is the target qubit, and ⊕
denotes addition modulo 2.

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0





Unitarity in Quantum Mechanics

Unitarity of Quantum Gates:
A quantum operation is said to be unitary if it preserves the total
probability, i.e., the norm of the quantum state. This ensures that
the probabilities of all possible outcomes add up to 1.

Definition of Unitarity: A matrix U is unitary if it satisfies the
condition:

U†U = UU† = I ,

where U† is the conjugate transpose of U, and I is the identity
matrix. Generalization of rotations (RRT = I ) to complex vector
spaces.

In QM, |ψ(t)⟩ = e iℏHt |ψ(0)⟩ is solution to Schrödinger equation,
and e iℏHt is unitary.



Grover’s algorithm (cont.)

Grover’s Algorithm:
Grover’s algorithm is a quantum algorithm designed to search an
unsorted database of N items in O(

√
N) time. This provides a

quadratic speedup over classical search algorithms, which take
O(N) time.

Key Idea: Rotation in State Space The core of Grover’s
algorithm is performing a series of quantum operations that rotate
the quantum state towards the correct answer in the Hilbert space.
Each iteration applies two key operations that amplify the
amplitude of the correct solution.

Quantum Speedup: - Classically, O(N) queries are needed to
search through N items. - Grover’s algorithm achieves O(

√
N)

queries, providing a quadratic speedup.



Grover’s algorithm (cont.)

1. Initialization: Start with a uniform superposition of all
possible states using Hadamard gates.

2. Oracle Query: The oracle flips the phase of the state
corresponding to the correct solution, creating a difference
between the correct state and all others.

3. Amplitude Amplification: Apply the Grover operator, which
acts as a rotation in the space, amplifying the amplitude of
the correct state.

4. Iteration: Repeat the amplitude amplification step O(
√
N)

times, effectively rotating the state closer to the solution.

5. Measurement: After O(
√
N) iterations, measure the state to

collapse it to the correct solution with high probability.



Grover’s algorithm circuit, geometry



Demo

https://github.com/jacksonwalters/shors-algorithm
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