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History of cryptography
▶ Scytale (Ancient Greece, 500 BCE) Uses a cylinder and a

strip of parchment to create a transposition cipher.

▶ Transposition Ciphers (Classical Era) Rearranging plaintext
characters according to a fixed system; examples include the
Caesar cipher and later polyalphabetic ciphers like Vigenère.

▶ Data Encryption Standard (DES, 1970s): Symmetric-key
algorithm developed by IBM, adopted as a US std. in 1977.
Block cipher using a 56-bit key, later replaced due to
vulnerability to brute-force attacks.

▶ Advanced Encryption Standard (AES, 2001) Successor to
DES, chosen through a public competition. Symmetric cipher
using Rijndael algorithm, widely used today for secure
communications.

▶ RSA & ECC (1970s–1980s)
RSA: First widely used public-key system based on the
difficulty of factoring large numbers.
ECDLP: Public-key system relying on f.g. abelian groups of
elliptic curves. Similar security with smaller keys.
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Shor’s algorithm to break RSA

▶ In order to decrypt ciphertext C = Me mod N quickly, we
need to find the modular inverse of e, where N = p · q is a
large semiprime.

▶ We are working in the group (Z/NZ)×, the multiplicative
group of integers modulo N.

▶ Note that the order of this group is given by the number of
elements coprime to N, which is just φ(N) = (q − 1)(p − 1).

▶ Once φ(N) is known, one can use the extended Euclidean
algorithm to compute the modular inverse d of e, i.e.
d · e ≡ 1 mod N. Then Cd ≡ Mde ≡ M1 ≡ M mod N.
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Shor’s algorithm: period to integer factors

▶ Shor’s algorithm is a quantum algorithm which can be used to
factor integers, and hence break RSA given enough qubits.

▶ The essential component of Shor’s algorithm is finding the
multiplicative order of an integer modulo N.

▶ For if we have such an a such that ar ≡ 1 mod N, then we
can write ar − 1 ≡ 0 mod N.

▶ As long as r is even (and it is with enough probability, so if
not we just try again), we can write (ar/2 − 1)(ar/2 + 1) ≡ 0
mod N.

▶ This means we can extract a factor via gcd(ar/2 − 1,N) or
gcd(ar/2 + 1,N) since we know N|(ar/2 − 1)(ar/2 + 1).
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Shor’s algorithm in a nutshell

Shor’s algorithm proceeds essentially in four steps:

▶ create a uniform superposition 2−N/2
∑N−1

k=0 |k⟩ using
Hadamard gates

▶ apply modular exponential gates U|k⟩ = |ak mod N⟩

▶ use the quantum Fourier transform (QFT) to perform phase
estimation and extract period r

▶ use classical continued fractions to extract the actual period
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Shor’s algorithm: phase estimation circuit



Motivation for Modern Cryptography

For modern cryptography, we aim to find problems that are
impractical or ideally impossible to solve, even on a quantum
computer.

The ”learning with errors” (LWE) problem, along with its
ring-LWE variant, is an example of such problems. It involves
distinguishing between two distributions:

▶ A set of random linear equations perturbed by a small error
(noise)

▶ A truly uniform random distribution



The Learning with Errors Problem

Given (A,b) ∈ Zn×m
q × Zm

q where b = As+ e mod q:

▶ A is a known random matrix

▶ s is a secret vector

▶ e is a noise vector sampled from a narrow error distribution

▶ q is a large modulus

The goal is to recover the secret s or distinguish (A,b) from
uniformly random samples. We’d like to know that instances of
this problem are hard in the average case. One way to do this is by
proving a reduction, that solving implies you’ve solved a ”hard”
problem in computer science. The two relevant reductions are:



Hardness of LWE

We would like to ensure that instances of LWE are hard in the
average case. This is done by proving reductions from well-known
hard problems in computer science:

▶ GapSVP: Shortest vector problem with a gap

▶ SIVP: Shortest independent vector problem

These lattice problems are:

▶ NP-hard in their exact versions

▶ Computationally hard in their approximate versions



The Ring-LWE Problem

The variant we focus on is ring-LWE, where the lattices are
number-theoretic and derived from ideals in certain polynomial
rings:

Rq = Zq[x ]/(f (x))

where f (x) is typically a polynomial like xn − 1. However, this
choice is insecure. Instead, we use:

f (x) = xn + 1

where n is typically a power of two. This is the “anti-cyclotomic”
ring of integers. The hard problem becomes:

▶ Ideal− SVP: Shortest vector problem for ideal lattices



Lattice Structure of the Ring

Consider the ring R = Z[x ]/(xn + 1):

▶ This is a Z-module of rank n.

▶ Any element a(x) ∈ R can be written as:

a(x) =
n−1∑
i=0

cix
i

▶ The vector (ci )
n−1
i=0 is the coefficient vector, making R ∼= Zn.



Connection Between Ring-LWE and Ideal Lattices

▶ (xn + 1) is an ideal, and elements e(x) ∈ R map to elements
in this lattice.

▶ The error e(x) corresponds to a short vector (in the Euclidean
norm) in the lattice, representing a small perturbation.

Ideal lattices inherit the ring’s structure, such as multiplication by
polynomials.



Reduction from Ring-LWE to Ideal-SVP

Solving ring-LWE allows efficient recovery of short vectors in ideal
lattices:

▶ Ring-LWE enables recovery of the secret s(x), which
corresponds to information about the underlying lattice
structure.

▶ Decoding the noisy lattice point perturbed by e(x) reveals a
short vector.

The reduction shows that solving ring-LWE allows decoding
perturbed lattice points for any ideal lattice in R, solving
Ideal-SVP in the process.



ring-LWE Overview

Our goal is to introduce the simplest possible implementation of
the ring-LWE encryption scheme.

▶ Choose a moderately large prime p and large n

▶ n should be a power of two and 512 or above

▶ Example: p = 3329

Let
Rp := Fp[x ]/(x

n + 1)

This is a finite ring with pn elements. It is not a finite field, as
xn + 1 factors modulo p (though it is irreducible over Z).
The elements are:

Rp = {an−1x
n−1 + an−2x

n−2 + . . .+ a1x + a0 : ai ∈ Fp}



Public Setup

The public setup involves the following:

1. A prime p and dimension n resulting in Rp

2. A moderately large integer k ∈ Z
3. A notion of “small”, as applied to elements of Rp.

▶ These will be “ternary polynomials” with coefficients in
{−1, 0,+1}



Key Generation: Private/Public Keypair

Bob creates a private/public keypair as follows:

1. Bob selects a small random element s of Rp

2. Bob selects a small random element e1 of Rp

3. Bob defines (a, b = as + e1) ∈ Rp × Rp

▶ The element e1 can be discarded

▶ Bob keeps s as his secret key

▶ Bob makes (a, b) public as his public key



Encryption by Alice

Alice encrypts a message m as follows:

1. Select a small random r ∈ Rp (ephemeral key)

2. Select small random e2, e3 ∈ Rp

3. Define v = ar + e2, w = br + e3 + km

▶ Alice may discard k , e2, and e3
▶ The ciphertext is (v ,w), which is sent to Bob



Decryption by Bob

Bob decrypts the message:

1. Compute x = w − vs

2. Round x to the nearest multiple of k

3. The result should be an integer; divide it by k to reveal the
message m



Homomorphic Encryption
Homomorphic encryption allows computations to be performed on
encrypted data without needing to decrypt it first. This enables
privacy-preserving computations.

▶ Encryption: The data is encrypted using a homomorphic
encryption scheme.

▶ Computation: Operations such as addition or multiplication
are performed directly on the encrypted data.

▶ Decryption: The result of the computation is decrypted to
reveal the final outcome.

Example: If E (x) represents the encryption of data x , and ⊕
denotes an operation (like addition or multiplication):

E (x + y) = E (x)⊕ E (y) or E (x × y) = E (x)⊗ E (y)

Homomorphic encryption can be used in cloud computing,
privacy-preserving machine learning, and secure multi-party
computations.



https://github.com/lattice-based-cryptography



ring-LWE: Library functions

use polynomial_ring :: Polynomial;

use rand_distr ::{ Uniform , Normal , Distribution };

use ntt:: polymul_ntt;

use rand:: SeedableRng;

use rand::rngs:: StdRng;

...

impl Default for Parameters {

fn default () -> Self {

let n = 16;

let q = 65536;

let t = 512;

let mut poly_vec = vec![0i64;n+1];

poly_vec [0] = 1;

poly_vec[n] = 1;

let f = Polynomial ::new(poly_vec);

Parameters { n, q, t, f }

}

}

Listing 1: lib.rs



Number Theoretic Transform (NTT)

The Number Theoretic Transform (NTT) is a variant of the Fast
Fourier Transform (FFT) used in modular arithmetic, often for
computations in finite fields.

Xk =
N−1∑
n=0

xn · ωn
k for k = 0, 1, 2, . . . ,N − 1

where:

▶ xn is the input sequence of length N,

▶ Xk is the transformed sequence,

▶ ω = g (p−1)/N is a primitive root of unity modulo a prime p,

▶ g is the generator for the field, and

▶ Use divide-and-conquer, recursively split for O(N log(N))



ring-LWE: ntt

// Forward transform using NTT , output bit -reversed

pub fn ntt(a: &[i64], omega: i64 , n: usize , p: i64) -> Vec <i64 > {

let mut result = a.to_vec ();

let mut step = n/2;

while step > 0 {

let w_i = mod_exp(omega , (n/(2* step)).try_into ().unwrap (), p);

for i in (0..n).step_by (2* step) {

let mut w = 1;

for j in 0.. step {

let u = result[i+j];

let v = result[i+j+step];

result[i+j] = mod_add(u,v,p);

result[i+j+step] = mod_mul(mod_add(u,p-v,p),w,p)

;

w = mod_mul(w,w_i ,p);

}

}

step /=2;

}

result

}

Listing 2: ntt



ring-LWE: polymul fast

pub fn polymul_fast(x: &Polynomial <i64 >, y: &Polynomial <i64 >, q: i64 , f: &

Polynomial <i64 >, root: i64) -> Polynomial <i64 > {

// Compute the degree and padded coefficients

let n = 2 * (x.deg().unwrap () + 1);

let x_pad = {

let mut coeffs = x.coeffs ().to_vec ();

coeffs.resize(n, 0);

coeffs

};

let y_pad = {

let mut coeffs = y.coeffs ().to_vec ();

coeffs.resize(n, 0);

coeffs

};

// Perform the polynomial multiplication

let r_coeffs = polymul_ntt (&x_pad , &y_pad , n, q, root);

// Construct the result polynomial and reduce modulo f

let mut r = Polynomial ::new(r_coeffs);

r = polyrem(r,f);

mod_coeffs(r, q)

}

Listing 3: polymul function



ring-LWE: Key generation

use polynomial_ring :: Polynomial;

use ring_lwe ::{ Parameters , polymul , polyadd , polyinv , gen_binary_poly ,

gen_uniform_poly , gen_normal_poly };

use std:: collections :: HashMap;

pub fn keygen(params: &Parameters , seed: Option <u64 >) -> ([ Polynomial <i64 >; 2],

Polynomial <i64 >) {

// rename parameters

let (n, q, f) = (params.n, params.q, &params.f);

// Generate a public and secret key

let sk = gen_binary_poly(n,seed);

let a = gen_uniform_poly(n, q, seed);

let e = gen_normal_poly(n, seed);

let b = polyadd (& polymul (& polyinv (&a,q*q), &sk, q*q, &f), &polyinv (&e,q*q),

q*q, &f);

// Return public key (b, a) as an array and secret key (sk)

([b, a], sk)

}

Listing 4: keygen



ring-LWE: Encryption

use polynomial_ring :: Polynomial;

use ring_lwe ::{ Parameters , mod_coeffs , polymul , polyadd , gen_binary_poly ,

gen_normal_poly };

pub fn encrypt(

pk: &[Polynomial <i64 >; 2], // Public key (b, a)

m: &Polynomial <i64 >, // Plaintext polynomial

params: &Parameters , // parameters (n,q,t,f)

seed: Option <u64 > // Seed for random number generator

) -> (Polynomial <i64 >, Polynomial <i64 >) {

let (n,q,t,f) = (params.n, params.q, params.t, &params.f);

// Scale the plaintext polynomial . use floor(m*q/t) rather than floor (q/t)*

m

let scaled_m = mod_coeffs(m * q / t, q);

// Generate random polynomials

let e1 = gen_normal_poly(n, seed);

let e2 = gen_normal_poly(n, seed);

let u = gen_binary_poly(n, seed);

// Compute ciphertext components

let ct0 = polyadd (& polyadd (& polymul (&pk[0], &u, q*q, f), &e1, q*q, f),&

scaled_m ,q*q,f);

let ct1 = polyadd (& polymul (&pk[1], &u, q*q, f), &e2, q*q, f);

(ct0 , ct1)

}

Listing 5: encrypt



ring-LWE: decryption

use polynomial_ring :: Polynomial;

use ring_lwe ::{ Parameters , polymul , polyadd , nearest_int };

pub fn decrypt(

sk: &Polynomial <i64 >, // Secret key

ct: &[Polynomial <i64 >; 2], // Array of ciphertext polynomials

params: &Parameters

) -> Polynomial <i64 > {

let (_n,q,t,f) = (params.n, params.q, params.t, &params.f);

let scaled_pt = polyadd (& polymul (&ct[1], sk , q, f),&ct[0], q, f);

let mut decrypted_coeffs = vec! [];

let mut s;

for c in scaled_pt.coeffs ().iter() {

s = nearest_int(c*t,q);

decrypted_coeffs.push(s.rem_euclid(t));

}

Polynomial ::new(decrypted_coeffs)

}

Listing 6: decrypt



Homomorphic Encryption: Relinearization for Decryption

To decrypt the ciphertexts efficiently, relinearization is used. With
s as secret key and ciphertext polynomials ci = (ui , vi ), define

(c0, c1, c2) := (v0 ∗ v1,−(u0 ∗ v1 + u1 ∗ v0), u0 ∗ u1)

To decrypt the ciphertext, one uses:

⌊c0 + c1 ∗ s + c2 ∗ s ∗ s
∆2

⌉

where s is the secret key, and ∆ is a scaling factor. Relinearization

simplifies the decryption process by reducing the number of
ciphertext components, allowing for more efficient decryption.



ring-LWE: homomorphic product test

// Generate the keypair

let (pk, sk) = keygen (&params ,seed);

// Encrypt plaintext messages

let u = encrypt (&pk, &m0_poly , &params , seed);

let v = encrypt (&pk, &m1_poly , &params , seed);

let plaintext_prod = &m0_poly * &m1_poly;

// compute product of encrypted data , using non -standard multiplication

let c0 = polymul (&u.0,&v.0,q*q,&f);

let u0v1 = &polymul (&u.0,&v.1,q*q,&f);

let u1v0 = &polymul (&u.1,&v.0,q*q,&f);

let c1 = polyadd(u0v1 ,u1v0 ,q*q,&f);

let c2 = polymul (&u.1,&v.1,q*q,&f);

let c = (c0 , c1, c2);

// compute c0 + c1*s + c2*s*s

let c1_sk = &polymul (&c.1,&sk ,q*q,&f);

let c2_sk_squared = &polymul (& polymul (&c.2,&sk,q*q,&f),&sk ,q*q,&f);

let ciphertext_prod = polyadd (& polyadd (&c.0,c1_sk ,q*q,&f),c2_sk_squared ,

q*q,&f);

// let delta = q / t, divide coeffs by 1 / delta ^2

let delta = q / t;

let decrypted_prod = mod_coeffs(Polynomial ::new(ciphertext_prod.coeffs ()

.iter().map(|& coeff| nearest_int(coeff ,delta * delta) ).collect::<

Vec <_>>()),t);

assert_eq!(plaintext_prod , decrypted_prod , "test␣failed:␣{}␣!=␣{}",

plaintext_prod , decrypted_prod);

Listing 7: decrypt



ring-LWE: benchmarking polymul fast

jacksonwalters@jaxmacbookair ring -lwe % cargo run --bin benchmark

Finished ‘dev ‘ profile [unoptimized + debuginfo] target(s) in 0.08s

Running ‘target/debug/benchmark ‘

Standard multiplication took: 13.75 mu s

Fast multiplication took: 47.959 mu s

Standard multiplication took: 4.241916 ms

Fast multiplication took: 785.292 mu s

Listing 8: benchmark



FIPS 203

▶ NIST recently (Aug.) released their post-quantum
cryptography standards

▶ CRYSTALS Kyber was selected for the KEM, forming the
FIPS 203 standard

▶ The core of this algorithm is module-LWE

▶ See: https://pq-crystals.org/kyber/ and
https://csrc.nist.gov/pubs/fips/203/final
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