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RSA & ECC (1970s-1980s)

RSA: First widely used public-key system based on the
difficulty of factoring large numbers.

ECDLP: Public-key system relying on f.g. abelian groups of
elliptic curves. Similar security with smaller keys.
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» In order to decrypt ciphertext C = M€ mod N quickly, we
need to find the modular inverse of e, where N =p-qgisa
large semiprime.

» We are working in the group (Z/NZ)*, the multiplicative
group of integers modulo N.

> Note that the order of this group is given by the number of
elements coprime to N, which is just ¢(N) = (g — 1)(p — 1).

» Once ¢(N) is known, one can use the extended Euclidean

algorithm to compute the modular inverse d of ¢, i.e.
d-e=1 mod N. Then C¢ = M9 =M =M mod N.
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algorithm: period to integer factors

Shor’s algorithm is a quantum algorithm which can be used to
factor integers, and hence break RSA given enough qubits.

The essential component of Shor's algorithm is finding the
multiplicative order of an integer modulo N.

For if we have such an a such that a" =1 mod N, then we
can write 3" —1 =0 mod N.

As long as r is even (and it is with enough probability, so if
not we just try again), we can write (a’/2 —1)(a"/2 +1) =0
mod N.

This means we can extract a factor via gcd(a”/? — 1, N) or
ged(a™/? 4 1, N) since we know N|(a”/2 —1)(a"/? +1).
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Shor's algorithm in a nutshell

Shor’s algorithm proceeds essentially in four steps:
> create a uniform superposition 2~N/2 ZLV;OI |k) using
Hadamard gates
» apply modular exponential gates U|k) = |a¥ mod N)
» use the quantum Fourier transform (QFT) to perform phase
estimation and extract period r
» use classical continued fractions to extract the actual period



Shor’s algorithm: phase estimation circuit
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Quantum subroutine in Shor's algorithm =




Motivation for Modern Cryptography

For modern cryptography, we aim to find problems that are
impractical or ideally impossible to solve, even on a quantum
computer.

The "learning with errors” (LWE) problem, along with its
ring-LWE variant, is an example of such problems. It involves
distinguishing between two distributions:
» A set of random linear equations perturbed by a small error
(noise)
» A truly uniform random distribution



The Learning with Errors Problem

Given (A,b) € Zg*™ x Zg' where b= As +e mod q:
> A is a known random matrix
P s is a secret vector
> e is a noise vector sampled from a narrow error distribution

» g is a large modulus

The goal is to recover the secret s or distinguish (A, b) from
uniformly random samples. We'd like to know that instances of
this problem are hard in the average case. One way to do this is by
proving a reduction, that solving implies you've solved a "hard”
problem in computer science. The two relevant reductions are:



Hardness of LWE

We would like to ensure that instances of LWE are hard in the
average case. This is done by proving reductions from well-known
hard problems in computer science:

» GapSVP: Shortest vector problem with a gap
» SIVP: Shortest independent vector problem

These lattice problems are:
» NP-hard in their exact versions

» Computationally hard in their approximate versions



The Ring-LWE Problem

The variant we focus on is ring-LWE, where the lattices are
number-theoretic and derived from ideals in certain polynomial
rings:

Rq = Zq[x]/(f(x))

where f(x) is typically a polynomial like x” — 1. However, this
choice is insecure. Instead, we use:

F(x) = x" +1

where n is typically a power of two. This is the “anti-cyclotomic”
ring of integers. The hard problem becomes:

» Ideal — SVP: Shortest vector problem for ideal lattices



Lattice Structure of the Ring

Consider the ring R = Z[x]/(x" + 1):
» This is a Z-module of rank n.

» Any element a(x) € R can be written as:

n—1
a(x) = Z cix'
i=0

» The vector (Cf)7:_01 is the coefficient vector, making R = Z".



Connection Between Ring-LWE and Ideal Lattices

» (x"+1) is an ideal, and elements e(x) € R map to elements
in this lattice.

» The error e(x) corresponds to a short vector (in the Euclidean
norm) in the lattice, representing a small perturbation.

Ideal lattices inherit the ring’'s structure, such as multiplication by
polynomials.



Reduction from Ring-LWE to |deal-SVP

Solving ring-LWE allows efficient recovery of short vectors in ideal
lattices:

» Ring-LWE enables recovery of the secret s(x), which
corresponds to information about the underlying lattice
structure.

» Decoding the noisy lattice point perturbed by e(x) reveals a
short vector.

The reduction shows that solving ring-LWE allows decoding
perturbed lattice points for any ideal lattice in R, solving
Ideal-SVP in the process.



ring-LWE Overview

Our goal is to introduce the simplest possible implementation of
the ring-LWE encryption scheme.

» Choose a moderately large prime p and large n
» n should be a power of two and 512 or above
> Example: p = 3329
Let
Rp :=Fp[x]/(x" + 1)

This is a finite ring with p” elements. It is not a finite field, as
x" + 1 factors modulo p (though it is irreducible over Z).
The elements are:

R, = {a,,_;lx"_1 +apox" 24 .. . +aix+ap:a€ Fp}



Public Setup

The public setup involves the following:
1. A prime p and dimension n resulting in R,
2. A moderately large integer k € Z

3. A notion of “small”, as applied to elements of R,,.

» These will be “ternary polynomials” with coefficients in
{-1,0,+1}



Key Generation: Private/Public Keypair

Bob creates a private/public keypair as follows:

1. Bob selects a small random element s of R,
Bob selects a small random element e; of R,
Bob defines (a,b=as+e;) € R, X R,

The element e; can be discarded

Bob keeps s as his secret key

vVvyVY ®nN

Bob makes (a, b) public as his public key



Encryption by Alice

Alice encrypts a message m as follows:
1. Select a small random r € R, (ephemeral key)
2. Select small random e, e3 € R,
3. Definev=ar+ e, w=br+e3+ km

» Alice may discard k, e, and e3
» The ciphertext is (v, w), which is sent to Bob



Decryption by Bob

Bob decrypts the message:
1. Compute x = w — vs
2. Round x to the nearest multiple of k

3. The result should be an integer; divide it by k to reveal the
message m



Homomorphic Encryption

Homomorphic encryption allows computations to be performed on
encrypted data without needing to decrypt it first. This enables
privacy-preserving computations.

» Encryption: The data is encrypted using a homomorphic
encryption scheme.

» Computation: Operations such as addition or multiplication
are performed directly on the encrypted data.

» Decryption: The result of the computation is decrypted to
reveal the final outcome.

Example: If E(x) represents the encryption of data x, and @
denotes an operation (like addition or multiplication):

E(x+y)=E(x)® E(y) or E(xxy)=E(x)®E(y)

Homomorphic encryption can be used in cloud computing,
privacy-preserving machine learning, and secure multi-party
computations.



https://github.com /lattice-based-cryptography
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ring-LWE: Library functions

use polynomial_ring::Polynomial;

use rand_distr::{Uniform, Normal, Distribution};
use ntt::polymul_ntt;

use rand::SeedableRng;

use rand::rngs::StdRng;

impl Default for Parameters {
fn default() -> Self {

let n = 16;
let q = 65536;
let t = 512;
let mut poly_vec = vec![0i64;n+1];
poly_vec[0] = 1;
poly_vec[n] = 1;
let f = Polynomial::new(poly_vec);
Parameters { n, q, t, f }

Listing 1: lib.rs



Number Theoretic Transform (NTT)

The Number Theoretic Transform (NTT) is a variant of the Fast
Fourier Transform (FFT) used in modular arithmetic, often for
computations in finite fields.

N-1
X = Zx,,-w,f for k=0,1,2,...,N—1
n=0
where:
» x, is the input sequence of length N,
> X, is the transformed sequence,
> w = gP~1/N is 3 primitive root of unity modulo a prime p,
» g is the generator for the field, and
>

Use divide-and-conquer, recursively split for O(N log(N))



ring-LWE: ntt

// Forward transform using NTT, output bit-reversed
pub fn ntt(a: &[i64], omega: i64, n: usize, p: i64) -> Vec<i64> {
let mut result = a.to_vec();
let mut step = n/2;
while step > 0 {
let w_i = mod_exp(omega, (n/(2*step)).try_into().unwrap(), p);
for i in (0..n).step_by(2xstep) {
let mut w = 1;
for j in 0..step {
let u = result[i+j];
let v = result[i+j+stepl;
result[i+j] = mod_add(u,v,p);
result[i+j+step] = mod_mul (mod_add(u,p-v,p),w,p)

w = mod_mul(w,w_i,p);
step/=2;

}

result

Listing 2: ntt



ring-LWE: polymul_fast

pub fn polymul_fast(x: &Polynomial<i64>, y: &Polynomial<i64>, q: i64, f: &
Polynomial<i64>, root: i64) -> Polynomial<i64> {
// Compute the degree and padded coefficients
let n = 2 * (x.deg().unwrap() + 1);
let x_pad = {

let mut coeffs = x.coeffs().to_vec();
coeffs.resize(n, 0);
coeffs

};

let y_pad = {
let mut coeffs = y.coeffs().to_vec();
coeffs.resize(n, 0);
coeffs

};

// Perform the polynomial multiplication
let r_coeffs = polymul_ntt(&x_pad, &y_pad, n, q, root);

// Construct the result polynomial and reduce modulo f
let mut r = Polynomial::new(r_coeffs);

r = polyrem(r,f);

mod_coeffs(r, q)

Listing 3: polymul function



ring-LWE: Key generation

use
use

polynomial_ring::Polynomial;

ring_lwe::{Parameters, polymul, polyadd, polyinv,
gen_uniform_poly, gen_normal_poly};

std::collections::HashMap;

fn keygen(params: &Parameters, seed: Option<u64>)
Polynomial<i64>) {

//Tename parameters
let (n, q, f) = (params.n, params.q, &params.f);

// Generate a public and secret key
let sk = gen_binary_poly(n,seed);

gen_binary_poly,

-> ([Polynomial<i64>; 2],

let a = gen_uniform_poly(n, q, seed);
let e = gen_normal_poly(n, seed);
let b = polyadd(&polymul (&polyinv (&a,q*q), &sk, q*q, &f), &polyinv(&e,q*q),

q*q, &f);

// Return public key (b, a) as an array and secret key (sk)

([b, al, sk)

Listing 4: keygen




ring-LWE: Encryption

use
use

polynomial_ring::Polynomial;

ring_lwe::{Parameters, mod_coeffs,
gen_normal_polyl};

pub fn encrypt(

pk: &[Polynomial<i64>;

m: &Polynomial<i64>,

params: &Parameters,

seed: Option<u64>

) -> (Polynomial<i64>,

let (n,q,t,f) = (params.n,

// Scale the plaintezt polynomial.

m
let scaled_m =

21,

// Generate random polynomials

let el = gen_normal_poly(n, seed);
let e2 = gen_normal_poly(n, seed);
let u = gen_binary_poly(n, seed);

// Compute ciphertezt components

let ct0 =
scaled_m,q*q,f);

let ctl = polyadd(&polymul (&pk[1],

(ct0, ctl)

// Public key (b,
// Plaintexzt polynomial
//parameters (n,q,t,f)

// Seed for random number generator
Polynomial<i64>) {
params.q,

polyadd (&polyadd (&polymul (&pk[0],

polymul, polyadd, gen_binary_poly,

a)

params.t, &params.f);

mod_coeffs(m * q / t, q);

use floor(m¥q/t) rather than floor (g/t)*
&u, q*q, f), &el, gxq, £f),&
&u, q*q, f), &e2, q*q, f);

Listing 5: encrypt




ring-LWE: decryption

use polynomial_ring::Polynomial;
use ring_lwe::{Parameters, polymul, polyadd, nearest_int};

pub fn decrypt(
sk: &Polynomial<i64>, // Secret key
ct: &[Polynomial<i64>; 2], // Array of ciphertexzt polynomials
params: &Parameters
) -> Polynomial<i64> {
let (_n,q,t,f) = (params.n, params.q, params.t, &params.f);
let scaled_pt = polyadd(&polymul (&ct[1], sk, q, f),&ct[0], q, £);
let mut decrypted_coeffs = vec![];
let mut s;
for ¢ in scaled_pt.coeffs().iter() {
s = nearest_int(c*t,q);
decrypted_coeffs.push(s.rem_euclid(t));
}
Polynomial::new(decrypted_coeffs)

Listing 6: decrypt



Homomorphic Encryption: Relinearization for Decryption

To decrypt the ciphertexts efficiently, relinearization is used. With
s as secret key and ciphertext polynomials ¢; = (u;, v;), define

(Co, c1, C2) = (VQ * Vi, _(UO * V1 4+ Uup x Vo), ug * Ul)

To decrypt the ciphertext, one uses:

CQ+C1*S+Cr*xS*sS
I_ A2 1

where s is the secret key, and A is a scaling factor. Relinearization

simplifies the decryption process by reducing the number of
ciphertext components, allowing for more efficient decryption.



ring-LWE: homomorphic product test

// Generate the keypair
let (pk, sk) = keygen(&params,seed);

// Encrypt plaintexzt messages
let u = encrypt(&pk, &mO_poly, &params, seed);
let v = encrypt(&pk, &ml_poly, &params, seed);

let plaintext_prod = &mO_poly * &ml_poly;

//compute product of encrypted data, using non-standard multiplication

let cO = polymul (&u.0,&v.0,q*q,&f);

let uOvl = &polymul (&u.0,&v.1,q*q,&f);

let ulv0 = &polymul (&u.1,&v.0,q*q,&f);

let c1 = polyadd(uOvl,ulv0,q*q,&f);

let c2 = polymul(&u.1,&v.1,q*q,&f);

let ¢ = (c0, c1, c2);

//compute cO + cl*s + c2*s*s

let cl_sk = &polymul(&c.1,&sk,q*q,&f);

let c2_sk_squared = &polymul (&polymul (&c.2,&sk,q*q,&f) ,&sk,q*q,&f);

let ciphertext_prod = polyadd(&polyadd(&c.0,cl_sk,q*q,&f),c2_sk_squared,
q*q,&f);

//let delta = q / t, divide coeffs by 1 / delta"2

let delta = q / t;

let decrypted_prod = mod_coeffs(Polynomial::new(ciphertext_prod.coeffs ()
.iter () .map (l&coeff| nearest_int(coeff,delta * delta) ).collect::<
Vec<_>>(0)),t);

assert_eq! (plaintext_prod, decrypted_prod, "testyfailed: {},'=y{}",
plaintext_prod, decrypted_prod);

Listing 7: decrypt



ring-LWE: benchmarking polymul_fast

jacksonwalters@jaxmacbookair ring-lwe % cargo run --bin benchmark

Finished ‘dev‘ profile [unoptimized + debuginfo] target(s) in 0.08s
Running ‘target/debug/benchmark ‘

Standard multiplication took: 13.75 mu s

Fast multiplication took: 47.959 mu s

Standard multiplication took: 4.241916ms

Fast multiplication took: 785.292 mu s

Listing 8: benchmark
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FIPS 203

» NIST recently (Aug.) released their post-quantum
cryptography standards

> CRYSTALS Kyber was selected for the KEM, forming the
FIPS 203 standard

» The core of this algorithm is module-LWE

> See: https://pg-crystals.org/kyber/ and
https://csrc.nist.gov/pubs/fips/203/final
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