
THE STEINBERG REPRESENTATION OF GL3(F2)

JACKSON WALTERS

1. Introduction

Let V be a vector space over F2 of dimension 3, and consider its automorphism group
G = GL(V ) ∼= GL3(F2). This is a finite simple group of order |G| = 168. To see this, note
a 3×3 matrix A is invertible iff its columns are linearly independent. To choose three such
vectors, we must first choose a nonzero vector a, followed by a nonzero vector b which is
not a, followed by a nonzero vector c which is neither a nor b and not in their span a+ b.
This yields (23 − 1)(23 − 2)(23 − 22) = 7 · 6 · 4 = 168 possibilities.

Note that since G is a finite group, we can compute its character table by considering
irreducible representations over C. It turns out these have dimension 1, 3, 3, 6, 7, 8. We
can verify the dimension formula 12+32+32+62+72+82 = 1+9+9+36+49+64 = 168.
We will briefly sketch the construction of smaller representations, with our goal being to ex-
plicitly construct the largest eight dimensional representation, the Steinberg representation.

• d = 1: trivial rep’n
• d = 3: standard rep’n
• d = 3: dual to standard rep’n
• d = 6: Λ2(std. rep’n)
• d = 7: action on P1(F7) via PSL2(F7) isomorphism minus trivial rep’n
• d = 8: Steinberg representation

The full character table is given in Table 1.

2. Tits Building

In order to construct the Steinberg representation, we will explicitly describe the action
of G on H1(∆(G);C), where ∆(G) is the Tits building associated to G, a simplicial com-
plex whose simplices correspond to flags of proper nontrivial subspaces of the vector space
V ∼= F3

2.

To construct the building, note that a nontrivial flag is given by p ⊂ H where p ∈ V is
a point corresponding to the 1 dim’l line spanF2

{p} := ⟨p⟩, and H is a 2 dim’l plane corre-
sponding to two basis vectors ⟨vi, vj⟩. We can also describe planes H as the vanishing set
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Class 1 2 3 4 7A 7B
Size 1 21 56 42 24 24
ρ1 1 1 1 1 1 1 trivial

ρ2 3 −1 0 1 −1+
√
−7

2
−1−

√
−7

2 complex faithful

ρ3 3 −1 0 1 −1−
√
−7

2
−1+

√
−7

2 complex faithful
ρ4 6 2 0 0 −1 −1 orthogonal faithful
ρ5 7 −1 1 −1 0 0 orthogonal faithful
ρ6 8 0 −1 0 1 1 orthogonal faithful

Table 1. Character table of G with conjugacy classes, sizes, and irreducible characters

of a linear functional Hv := {x : x · v = 0}, e.g. H(1,0,0) = {x : (1, 0, 0) · x = 0} = {x1 = 0}.
There are 7 points and 7 planes in V . There are 3 · 7 = 21 incidence relations correspond-
ing to the incidence graph of the Fano plane where we have an edge if p ⊂ H. Thus we
obtain an oriented, bipartite, trivalent graph with orientation given by the boundary map
∂(p ⊂ H) = H − p.

For concision, let pi denote the point with coordinates given by the binary representa-
tion of i, e.g. i = 5 ↔ 101 ↔ (1, 0, 1). That is, if i = b02

0 + b12
1 + b22

2 in binary, then
pi = (b0, b1, b2). Let Hi denote the plane given by the linear equation {x · pi = 0}, e.g.
H5 = {x · p5 = 0} = {x0 + x2 = 0}.

p1 = ⟨001⟩

p2 = ⟨010⟩

p3 = ⟨011⟩

p4 = ⟨100⟩

p5 = ⟨101⟩

p6 = ⟨110⟩

p7 = ⟨111⟩

H1 : {x0 = 0}

H2 : {x1 = 0}

H3 : {x0 + x1 = 0}

H4 : {x2 = 0}

H5 : {x0 + x2 = 0}

H6 : {x1 + x2 = 0}

H7 : {x0 + x1 + x2 = 0}

Figure 1. The Tits building ∆(G) of GL3(F2) as a bipartite incidence graph.
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A chamber is a maximal simplex in the building, so in this case would correspond to a
maximal flag. There are 3×7 = 21 such flags which are just the edges of the incidence graph.

An apartment is a subcomplex of ∆ which is isomorphic to the Coxeter complex of the
Weyl group W .

The Weyl group of a reductive algebraic group, or in this case a finite group of Lie
type, is W := NG(T )/T where T ⊂ G is a maximal torus. In this case, the maximal

torus consists of diagonal matrices, so T ∼=
(
F×
2

)3 ∼= {Id}. The normalizer can be written
as a semidirect product of diagonal matrices and permutation matrices (monomial matri-
ces), so NG(T ) = TΣ3, where Σ3 are permutation matrices of degree 3. Therefore we see
W = TΣ3/T = Σ3

∼= S3.

Each apartment is generated by a choice of basis for V . For example, consider the
standard basis {e0, e1, e2}. We have three lines ⟨ei⟩ and three planes ⟨ei, ej⟩. We have cor-
responding edges, e.g. ⟨e0⟩ ⊂ ⟨e0, e1⟩. In total there are six edges, and we get the hexagon
shape in Figure 2.

⟨e0⟩

⟨e0, e1⟩

⟨e1⟩

⟨e1, e2⟩

⟨e2⟩

⟨e0, e2⟩

⊂

⊃

⊂⊃

⊂

⊃

Figure 2. The apartment corresponding to the standard basis {e1, e2, e3}
of V .

The Weyl group W acts on apartments. Let σ ∈ W ∼= S3 be a permutation. Then
σ · ⟨ei⟩ = ⟨σei⟩ = ⟨eσ(i)⟩ for lines. Similarly, σ · ⟨ei, ej⟩ = ⟨eσ(i), eσ(j)⟩ for planes. For
example, let σ = (0 1) be the transposition swapping zero and one. Then we obtain the
permuted apartment in Figure 3.
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⟨e1⟩

⟨e0, e1⟩

⟨e0⟩

⟨e0, e2⟩

⟨e2⟩

⟨e1, e2⟩

⊂

⊃

⊂⊃

⊂

⊃

Figure 3. The apartment corresponding to the standard basis of V per-
muted by the transposition (0 1).

3. Computing H̃1(∆(G);C)

Note that the building is a rank-2 simplicial complex, so we can form the chain complex

0 → C1
∂−→ C0 → 0 where the boundary map again is ∂[p ⊂ H] = H−p for an oriented edge

p ⊂ H in the incidence graph. The 1-chains are given by formal C−linear combinations of
edges, C1 = C[edges], and the 0-chains are C0 = C[vertices]. Note that dim(C1) = 21 and
dim(C0) = 14 since there are 21 edges and 7 lines + 7 planes.

Note that H0(∆(G);C) = ker(C0 → 0)/im(∂) ∼= C0/im(∂) ∼= C since ∆(G) is a con-
nected graph. This means that dim(im(G)) = 13, and so we conclude that dim(ker(∂)) =
21 − 13 = 8. Therefore H1(∆(G);C) = ker(∂)/im(0 → C1) ∼= ker(∂). This is the right
dimension for the Steinberg representation.

Now, let’s compute a basis for H1(∆(G);C). We can represent ∂ as a 14× 21 matrix:
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

−1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 −1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −1 −1
1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1


The kernel of this matrix is an eight dimensional subspace of the row space:



1 0 −1 0 0 0 0 0 0 0 0 0 −1 0 1 0 0 0 1 0 −1
0 1 −1 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 1 1 0 −1
0 0 0 1 0 −1 0 0 0 0 0 0 0 −1 1 0 0 0 1 0 −1
0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 −1 1 1 0 −1
0 0 0 0 0 0 1 0 −1 0 0 0 −1 0 1 0 0 0 0 1 −1
0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 0 −1 1 0 1 −1
0 0 0 0 0 0 0 0 0 1 0 −1 0 0 0 −1 0 1 0 1 −1
0 0 0 0 0 0 0 0 0 0 1 −1 0 −1 1 0 0 0 0 1 −1


For example, we could look at the first basis vector:

(1, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, 1, 0, 0, 0, 1, 0,−1)

Recall that the columns are indexed by edges in the incidence graph, so we really get a
signed formal linear combination of six edges:

+
[
(1, 0, 0) ⊂ {x3 = 0}

]
−

[
(1, 0, 0) ⊂ {x2 = 0}

]
−

[
(0, 1, 0) ⊂ {x3 = 0}

]
+

[
(0, 1, 0) ⊂ {x1 = 0}

]
+

[
(0, 0, 1) ⊂ {x2 = 0}

]
−

[
(0, 0, 1) ⊂ {x1 = 0}

]
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Note that for any apartment, the cycle formed from the oriented linear combination
of edges will be in ker(∂). For example, consider the apartment A we constructed above
corresponding to the identity of the group, i.e. the standard basis {e0, e1, e2}. Let vA ∈ C1

be the chain associated to A:

vA = (1, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, 1, 0, 0, 0, 1, 0,−1)

Then we can expand vA as:

+
[
(1, 0, 0) ⊂ {x3 = 0}

]
−
[
(1, 0, 0) ⊂ {x2 = 0}

]
−
[
(0, 1, 0) ⊂ {x3 = 0}

]
+
[
(0, 1, 0) ⊂ {x1 = 0}

]
+
[
(0, 0, 1) ⊂ {x2 = 0}

]
−
[
(0, 0, 1) ⊂ {x1 = 0}

]
We can verify vA ∈ ker(∂) by either applying ∂ directly or multiplying by the matrix

[∂]. Let’s verify directly:

∂(vA) =

+ ∂
[
(1, 0, 0) ⊂ {x3 = 0}

]
− ∂

[
(1, 0, 0) ⊂ {x2 = 0}

]
− ∂

[
(0, 1, 0) ⊂ {x3 = 0}

]
+ ∂

[
(0, 1, 0) ⊂ {x1 = 0}

]
+ ∂

[
(0, 0, 1) ⊂ {x2 = 0}

]
− ∂

[
(0, 0, 1) ⊂ {x1 = 0}

]
=

+ {x3 = 0} − (1, 0, 0)

− {x2 = 0}+ (1, 0, 0)

− {x3 = 0}+ (0, 1, 0)

+ {x1 = 0} − (0, 1, 0)

+ {x2 = 0} − (0, 0, 1)

− {x1 = 0}+ (0, 0, 1)

= 0

Each element g ∈ G gives rise to an apartment, and each vg ∈ ker(∂). Up to orientation,
there are 28 total unique apartments. The Weyl group W acts on the apartments, and
they break into 7 orbits of size [1, 3, 3, 3, 6, 6, 6].

For each g ∈ G, we also have an action on the edge set given by g · [p ⊂ H] = [gp ⊂ gH].
This action on C1 is therefore an action on H1(∆(G);C) = ker(∂) ⊂ C1.

We have now constructed an 8 dim’l vector space over C with a G-action. It remains to
show that this representation is irreducible. We proceed by brute force calculation. Note
that for the standard apartment A above, dim(spanC{GvA}) = dim(ker(∂)) = 8, and in
fact spanC{GvA} = ker(∂). Since the representation is the G-orbit of a single vector, it is
irreducible. □


