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» Relevant hard problems on lattices
» Implementation of ring-LWE in Rust
>

Shout out to module-LWE, FIPS 203
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History of cryptography

» People have been trying to conceal transmitted information
for thousands of years

» Three phases: manual (pre-computer), mechanical (switches,
tapes, relays), digital/electronic

» First recorded use was a scytale formed by wrapping a leather
strap around a baton upon which words were written

> When unwrapped, the letters appeared scrambled

» This is an example of a transposition cipher. Letters are
moved a fixed distance from their original position to form the
“ciphertext”
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History of cryptography

» A shift by three units is known as a Caesar cipher.

» Could index letters X by elements of Z/NZ, so then
X,' — Xi+3.

> Could also do Xj — X,y for permutation o (permutation
cipher)

P A variation is the Vigenére cipher, in which a key is repeated

many times, and the letter in the key determines how many
positions to shift the letter.



History of cryptography: Vigenere cipher

Plaintext: attackatdawn
Key: LEMONLEMONLE
Ciphertext: LXFOPVEFRNHR
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History of cryptography

» C = X+ Ki mod 26, where we view K; (key letters) and X;
(plaintext) as integers representing one of twenty-six letters.
These are known as polyalphabetic ciphers.

> The Vigenere cipher was considered to be unbreakable by
many through the early twentieth century. This was not the
case. The Confederate army used this cipher and it was often
broken. They relied on keyphrases such as " Manchester
Bluff’, " Complete Victory” and, as the war came to a close,
" Come Retribution”.

» Around 1917, it was realized by Edward H. Hebern that these
monoalphabetic ciphers could be chained together using a
system of rotors by hardwiring one to the next. A set or stack
of these rotors was put together, and as one rotates the other
rotates by one tenth or so of the previous one. There is some
dispute as to whether the Dutch Navy first invented this
system a couple years before.
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These poly-alphabetic rotor ciphers would form the precursor
to machines like the Enigma machine used in World War II.

The Hagelin design M-209 U.S. cipher machine was used for
tactical communications during World War I1.

Such devices are pin-and-lug machines, and they typically
consist of a collection of rotors having a prime number of
labeled positions on each rotor.

At each position a small pin can be set to an active or inactive
position. In operation, all of the rotors advance one position
at each step.

Therefore, if the active pin settings are chosen appropriately,
the machine will not recycle to its initial pin configuration
until it has been advanced a number of steps equal to the
product of the number of positions in each one of the rotors.



History of cryptography: Hagelin design M-209
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» AES (Advanced Encryption Standard) is a block cipher and a
type of symmetric encryption algorithm, meaning the same
key is used for both encryption and decryption. It transforms
fixed-size blocks of plaintext (128 bits) into ciphertext using a
secret key, which can be 128, 192, or 256 bits. AES works by
applying a series of transformations called rounds to the data.
Each round involves substituting bytes, shuffling rows, mixing
columns, and combining the data with a version of the key
using XOR operations. The number of rounds depends on the
key size: 10 for 128-bit keys, 12 for 192-bit keys, and 14 for
256-bit keys.

» The strength of AES comes from its use of multiple rounds
that make the ciphertext appear random and secure against
attacks. Even a small change in the plaintext or key results in
completely different ciphertext due to the scrambling process.
Decryption reverses these steps using the same key. AES is
fast, efficient, and widely adopted for securing data in
applications like VPNs, disk encryption, and secure



RSA basics

» RSA stands for Ron Rivest, Adi Shamir and Leonard Adleman



RSA basics

» RSA stands for Ron Rivest, Adi Shamir and Leonard Adleman

» RSA is a public-key cryptographic algorithm that relies on the
mathematical properties of large prime numbers

P [t is asymmetric, i.e. it generates two keys: a public key for
encryption and a private key for decryption



RSA basics

» RSA stands for Ron Rivest, Adi Shamir and Leonard Adleman

» RSA is a public-key cryptographic algorithm that relies on the
mathematical properties of large prime numbers

P [t is asymmetric, i.e. it generates two keys: a public key for
encryption and a private key for decryption

» The core idea of RSA is based on the difficulty of factoring

the product of two large prime numbers, a problem that is
computationally infeasible for sufficiently large primes



RSA basics

» RSA stands for Ron Rivest, Adi Shamir and Leonard Adleman

» RSA is a public-key cryptographic algorithm that relies on the
mathematical properties of large prime numbers

P [t is asymmetric, i.e. it generates two keys: a public key for
encryption and a private key for decryption

» The core idea of RSA is based on the difficulty of factoring
the product of two large prime numbers, a problem that is
computationally infeasible for sufficiently large primes

» RSA encrypts data by raising it to a power (the public key
exponent) modulo a large number (the product of the two
primes)



RSA basics

» RSA stands for Ron Rivest, Adi Shamir and Leonard Adleman

» RSA is a public-key cryptographic algorithm that relies on the
mathematical properties of large prime numbers

P [t is asymmetric, i.e. it generates two keys: a public key for
encryption and a private key for decryption

» The core idea of RSA is based on the difficulty of factoring
the product of two large prime numbers, a problem that is
computationally infeasible for sufficiently large primes

» RSA encrypts data by raising it to a power (the public key
exponent) modulo a large number (the product of the two
primes)

P decryption reverses this operation using the private key
exponent.
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» One interesting property of RSA is that it is multiplicatively
homomorphic.

» This means that if you multiply two ciphertexts, the result
corresponds to the encryption of the product of the two
plaintexts.

> Mathematically,
CGi=M; mod N

G =M; mod N
G-G mod N=M; -Mj= (M -M)® modN

» It's homomorphic, so we're done with the talk.

> jk. it's not additively homomorphic!
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» Elliptic Curve Cryptography (ECC) is a type of public-key
cryptography based on the Elliptic Curve Discrete Logarithm
Problem (ECDLP), which is considered much harder to solve
than the integer factorization problem RSA relies on.

» The ECDLP involves finding an integer k, given two points P
and Q on an elliptic curve such that Q = kP.

» The operations on elliptic curves, like point addition and
scalar multiplication, are defined over finite fields and exhibit
complex algebraic properties that make reversing @ back to k
computationally infeasible for large curves.

» This difficulty provides the foundation for ECC’s security.



ECC: how to add points on an elliptic curve

P+Q+R=0 P+Q+Q=0 P+Q+0=0

P+P+0=0
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Interestingly, RSA can also be described in terms of a discrete
logarithm problem.

In RSA, the encryption of a plaintext M is performed by
computing C = M€ mod N where e is the public exponent
and N is the modulus.

Recovering M from C and e involves solving for the discrete
logarithm of C with base M modulo N, given by C = M*¢
mod N.

However, RSA avoids framing its security directly in terms of
this discrete log problem because its underlying strength is
tied to the difficulty of factoring N into its prime components,
not directly to solving discrete logs.

In contrast, ECC's security is inherently tied to the hardness
of solving discrete logarithms, making it a more direct analog
to cryptographic schemes based on discrete log problems.

This results in smaller key sizes for ECC as compared to RSA
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» In order to decrypt ciphertext C = M€ mod N quickly, we
need to find the modular inverse of e, where N =p-qgisa
large semiprime.

» We are working in the group (Z/NZ)*, the multiplicative
group of integers modulo N.

> Note that the order of this group is given by the number of
elements coprime to N, which is just ¢(N) = (g — 1)(p — 1).

» Once ¢(N) is known, one can use the extended Euclidean

algorithm to compute the modular inverse d of ¢, i.e.
d-e=1 mod N. Then C¢ = M9 =M =M mod N.
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algorithm: period to integer factors

Shor’s algorithm is a quantum algorithm which can be used to
factor integers, and hence break RSA given enough qubits.

The essential component of Shor's algorithm is finding the
multiplicative order of an integer modulo N.

For if we have such an a such that a" =1 mod N, then we
can write 3" —1 =0 mod N.

As long as r is even (and it is with enough probability, so if
not we just try again), we can write (a’/2 —1)(a"/2 +1) =0
mod N.

This means we can extract a factor via gcd(a”/? — 1, N) or
ged(a™/? 4 1, N) since we know N|(a”/2 —1)(a"/? +1).
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Shor's algorithm in a nutshell

Shor’s algorithm proceeds essentially in four steps:
> create a uniform superposition 2~N/2 ZLV;OI |k) using
Hadamard gates
» apply modular exponential gates U|k) = |a¥ mod N)
» use the quantum Fourier transform (QFT) to perform phase
estimation and extract period r
» use classical continued fractions to extract the actual period
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Shor's

algorithm in a nutshell

We construct the superposition using Hadamard gates which
map

10) = 10) + 1)
1) = 10) = 1)

mixing each qubit state. Taking tensor products, we get the
full superposition.

Use modular exponentiation and repeated doubling gates U,;,
where U,|k) = |a®) and we do this for each bit of k. Very
hard-coded.

Peaked for the frequencies that are present in the function on
(Z/NZ)*. Namely, the function |k) — |a*), which is periodic
of period r, so again 3" =1 mod N.

obtain phase ¢ related to r, can be expressed as k/r. Use

continued fractions algorithm to approximate ¢ as k/r, then
deduce r



Shor’s algorithm: phase estimation circuit
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Quantum subroutine in Shor's algorithm =




Motivation for Modern Cryptography

For modern cryptography, we aim to find problems that are
impractical or ideally impossible to solve, even on a quantum
computer.

The "learning with errors” (LWE) problem, along with its
ring-LWE variant, is an example of such problems. It involves
distinguishing between two distributions:
» A set of random linear equations perturbed by a small error
(noise)
» A truly uniform random distribution



The Learning with Errors Problem

Given (A,b) € Zg*™ x Zg' where b= As +e mod q:
> A is a known random matrix
P s is a secret vector
> e is a noise vector sampled from a narrow error distribution

» g is a large modulus

The goal is to recover the secret s or distinguish (A, b) from
uniformly random samples. We'd like to know that instances of
this problem are hard in the average case. One way to do this is by
proving a reduction, that solving implies you've solved a "hard”
problem in computer science. The two relevant reductions are:



Hardness of LWE

We would like to ensure that instances of LWE are hard in the
average case. This is done by proving reductions from well-known
hard problems in computer science:

» GapSVP: Shortest vector problem with a gap
» SIVP: Shortest independent vector problem

These lattice problems are:
» NP-hard in their exact versions

» Computationally hard in their approximate versions



The Ring-LWE Problem

The variant we focus on is ring-LWE, where the lattices are
number-theoretic and derived from ideals in certain polynomial
rings:

Rq = ZIx]/(f(x))

where f(x) is typically a polynomial like x” — 1. However, this
choice is insecure. Instead, we use:

F(x) = x" +1

where n is typically a power of two. This is the “anti-cyclotomic”
ring of integers. The hard problem becomes:

» Ideal — SVP: Shortest vector problem for ideal lattices



Lattice Structure of the Ring

Consider the ring R = Z[x]/(x" + 1):
» This is a Z-module of rank n.

» Any element a(x) € R can be written as:

n—1
a(x) = Z cix'
i=0

» The vector (Cf)7:_01 is the coefficient vector, making R = Z".



Connection Between Ring-LWE and Ideal Lattices

» (x"+1) is an ideal, and elements e(x) € R map to elements
in this lattice.

» The error e(x) corresponds to a short vector (in the Euclidean
norm) in the lattice, representing a small perturbation.

Ideal lattices inherit the ring’'s structure, such as multiplication by
polynomials.



Reduction from Ring-LWE to |deal-SVP

Solving ring-LWE allows efficient recovery of short vectors in ideal
lattices:

» Ring-LWE enables recovery of the secret s(x), which
corresponds to information about the underlying lattice
structure.

» Decoding the noisy lattice point perturbed by e(x) reveals a
short vector.

The reduction shows that solving ring-LWE allows decoding
perturbed lattice points for any ideal lattice in R, solving
Ideal-SVP in the process.



ring-LWE Overview

Our goal is to introduce the simplest possible implementation of
the ring-LWE encryption scheme.

» Choose a moderately large prime p and large n
» n should be a power of two and 512 or above
> Example: p = 3329
Let
Rp :=Fp[x]/(x" + 1)

This is a finite ring with p” elements. It is not a finite field, as
x" + 1 factors modulo p (though it is irreducible over Z).
The elements are:

R, = {a,,_;lx"_1 +apox" 24 .. . +aix+ap:a€ Fp}



Public Setup

The public setup involves the following:
1. A prime p and dimension n resulting in R,
2. A moderately large integer k € Z

3. A notion of “small”, as applied to elements of R,,.

» These will be “ternary polynomials” with coefficients in
{-1,0,+1}



Key Generation: Private/Public Keypair

Bob creates a private/public keypair as follows:

1. Bob selects a small random element s of R,
Bob selects a small random element e; of R,
Bob defines (a,b=as+e;) € R, X R,

The element e; can be discarded

Bob keeps s as his secret key

vVvyVY ®nN

Bob makes (a, b) public as his public key



Encryption by Alice

Alice encrypts a message m as follows:
1. Select a small random r € R, (ephemeral key)
2. Select small random e, e3 € R,
3. Definev=ar+ e, w=br+e3+ km

» Alice may discard k, e, and e3
» The ciphertext is (v, w), which is sent to Bob



Decryption by Bob

Bob decrypts the message:
1. Compute x = w — vs
2. Round x to the nearest multiple of k

3. The result should be an integer; divide it by k to reveal the
message m



Example: Parameters

> n=4
> p=101
> k=20



Example: Key Generation

» Private key: s = x3 + 100
» Error for public key: e = x3 + x2 + 100x
Public key:

a=83x3 +23x% + 51x + 77
b=as+e=096x>+97x> + 26x + 74



Example: Encryption

» Message m € {0,1,2,3,4}, eg., m=3
» Ephemeral key: r = 100x? + 100x

» Errors for ciphertext:

e = X2
e, = 100x° + x
Ciphertext:
v=ar+e =27x3 + 75x°> + 6x + 5
w = br + ey + km = 79x3 + 23x + 51



Example: Decryption

» Decryption formula: w — vs = x? 4 3x + 62
» Round to nearest 20: 60 = 3k
> The message is m=3



https://github.com /lattice-based-cryptography
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ring-LWE: Library functions

use polynomial_ring::Polynomial;

use rand_distr::{Uniform, Normal, Distribution};
use rand::SeedableRng;

use rand::rngs::StdRng;

impl Default for Parameters {
fn default () -> Self {

let n = 16;
let q = 65536;
let t = 512;
let mut poly_vec = vec![0i64;n+1];
poly_vec[0] = 1;
poly_vec[n] = 1;
let f = Polynomial::new(poly_vec);
Parameters { n, q, t, f }

Listing 1: lib.rs



ring-LWE: polymul

Polynomial<i64>) -> Polynomial<i64> {
//Multiply two polymnoms
//Args :
// m, y: two polynoms to be multiplied.
// modulus: coefficient modulus.
// f: polynomial modulus.

//Returns:

// polynomial in Z_modulus[X]/(f).
let mut r = x*y;
r = mod_coeffs(r, modulus);

r.division(f);
mod_coeffs(r, modulus)

pub fn polymul(x : &Polynomial<i64>, y : &Polynomial<i64>,

modulus

i64,

Listing 2: polymul function




ring-LWE: Key generation

use
use

polynomial_ring::Polynomial;

ring_lwe::{Parameters, polymul, polyadd, polyinv,
gen_uniform_poly, gen_normal_poly};

std::collections::HashMap;

fn keygen(params: &Parameters, seed: Option<u64>)
Polynomial<i64>) {

//Tename parameters
let (n, q, f) = (params.n, params.q, &params.f);

// Generate a public and secret key
let sk = gen_binary_poly(n,seed);

gen_binary_poly,

-> ([Polynomial<i64>; 2],

let a = gen_uniform_poly(n, q, seed);
let e = gen_normal_poly(n, seed);
let b = polyadd(&polymul (&polyinv (&a,q*q), &sk, q*q, &f), &polyinv(&e,q*q),

q*q, &f);

// Return public key (b, a) as an array and secret key (sk)

([b, al, sk)

Listing 3: keygen




ring-LWE: Encryption

use
use

polynomial_ring::Polynomial;

ring_lwe::{Parameters, mod_coeffs,
gen_normal_polyl};

pub fn encrypt(

pk: &[Polynomial<i64>;

m: &Polynomial<i64>,

params: &Parameters,

seed: Option<u64>

) -> (Polynomial<i64>,

let (n,q,t,f) = (params.n,

// Scale the plaintezt polynomial.

m
let scaled_m =

21,

// Generate random polynomials

let el = gen_normal_poly(n, seed);
let e2 = gen_normal_poly(n, seed);
let u = gen_binary_poly(n, seed);

// Compute ciphertezt components

let ct0 =
scaled_m,q*q,f);

let ctl = polyadd(&polymul (&pk[1],

(ct0, ctl)

// Public key (b,
// Plaintexzt polynomial
//parameters (n,q,t,f)

// Seed for random number generator
Polynomial<i64>) {
params.q,

polyadd (&polyadd (&polymul (&pk[0],

polymul, polyadd, gen_binary_poly,

a)

params.t, &params.f);

mod_coeffs(m * q / t, q);

use floor(m¥q/t) rather than floor (g/t)*
&u, q*q, f), &el, gxq, £f),&
&u, q*q, f), &e2, q*q, f);

Listing 4: encrypt




ring-LWE: decryption

use polynomial_ring::Polynomial;
use ring_lwe::{Parameters, polymul, polyadd, nearest_int};

pub fn decrypt(
sk: &Polynomial<i64>, // Secret key
ct: &[Polynomial<i64>; 2], // Array of ciphertexzt polynomials
params: &Parameters
) -> Polynomial<i64> {
let (_n,q,t,f) = (params.n, params.q, params.t, &params.f);
let scaled_pt = polyadd(&polymul (&ct[1], sk, q, f),&ct[0], q, £);
let mut decrypted_coeffs = vec![];
let mut s;
for ¢ in scaled_pt.coeffs().iter() {
s = nearest_int(c*t,q);
decrypted_coeffs.push(s.rem_euclid(t));
}
Polynomial::new(decrypted_coeffs)

Listing 5: decrypt



module-LWE diagram

KEY GENERATION ENCRYPT
R:=Z,[x]/ (x" +1) ~ m,e € R
q . 4
2 e R PRAMPD (sl ¢erl e R
so), leg) € R¥*1 {pal := (s11A + (exl
Ipo) == Also) + leo) ¢:=lg/2Im+ e+ Gilpo)
SK: |So)
CT: ¢, {p1l
DECRYPT

m = [(2/g)(c - (p1lsoN)]



FIPS 203

» NIST recently (Aug.) released their post-quantum
cryptography standards

> CRYSTALS Kyber was selected for the KEM, forming the
FIPS 203 standard
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FIPS 203

» NIST recently (Aug.) released their post-quantum
cryptography standards

> CRYSTALS Kyber was selected for the KEM, forming the
FIPS 203 standard

» The core of this algorithm is module-LWE

> See: https://pg-crystals.org/kyber/ and
https://csrc.nist.gov/pubs/fips/203/final
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